Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Front Psychol ; 15: 1327822, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659667

RESUMO

Exercise can induce brain plasticity. Functional near-infrared spectroscopy (fNIRS) is a functional neuroimaging technique that exploits cerebral hemodynamics and has been widely used in the field of sports psychology to reveal the neural mechanisms underlying the effects of exercise. However, most existing fNIRS studies are cross-sectional and do not include exercise interventions. In addition, attributed to differences in experimental designs, the causal relationship between exercise and brain functions remains elusive. Hence, this systematic review aimed to determine the effects of exercise interventions on alterations in brain functional activity in healthy individuals using fNIRS and to determine the applicability of fNIRS in the research design of the effects of various exercise interventions on brain function. Scopus, Web of Science, PubMed, CNKI, Wanfang, and Weipu databases were searched for studies published up to June 15, 2021. This study was performed in accordance with the PRISMA guidelines. Two investigators independently selected articles and extracted relevant information. Disagreements were resolved by discussion with another author. Quality was assessed using the Cochrane risk-of-bias method. Data were pooled using random-effects models. A total of 29 studies were included in the analysis. Our results indicated that exercise interventions alter oxygenated hemoglobin levels in the prefrontal cortex and motor cortex, which are associated with improvements in higher cognitive functions (e.g., inhibitory control and working memory). The frontal cortex and motor cortex may be key regions for exercise-induced promotion of brain health. Future research is warranted on fluctuations in cerebral blood flow during exercise to elucidate the neural mechanism underlying the effects of exercise. Moreover, given that fNIRS is insensitive to motion, this technique is ideally suited for research during exercise interventions. Important factors include the study design, fNIRS device parameters, and exercise protocol. The examination of cerebral blood flow during exercise intervention is a future research direction that has the potential to identify cortical hemodynamic changes and elucidate the relationship between exercise and cognition. Future studies can combine multiple study designs to measure blood flow prior to and after exercise and during exercise in a more in-depth and comprehensive manner.

2.
Cytokine ; 179: 156598, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583255

RESUMO

BACKGROUND: Allograft rejection remains a major obstacle to long-term graft survival. Although previous studies have demonstrated that IL-37 exhibited significant immunomodulatory effects in various diseases, research on its role in solid organ transplantation has not been fully elucidated. In this study, the therapeutic effect of recombinant human IL-37 (rhIL-37) was evaluated in a mouse cardiac allotransplantation model. METHODS: The C57BL/6 recipients mouse receiving BALB/c donor hearts were treated with rhIL-37. Graft pathological and immunohistology changes, immune cell populations, and cytokine profiles were analyzed on postoperative day (POD) 7. The proliferative capacities of Th1, Th17, and Treg subpopulations were assessed in vitro. Furthermore, the role of the p-mTOR pathway in rhIL-37-induced CD4+ cell inhibition was also elucidated. RESULTS: Compared to untreated groups, treatment of rhIL-37 achieved long-term cardiac allograft survival and effectively alleviated allograft rejection indicated by markedly reduced infiltration of CD4+ and CD11c+ cells and ameliorated graft pathological changes. rhIL-37 displayed significantly less splenic populations of Th1 and Th17 cells, as well as matured dendritic cells. The percentages of Tregs in splenocytes were significantly increased in the therapy group. Furthermore, rhIL-37 markedly decreased the levels of TNF-α and IFN-γ, but increased the level of IL-10 in the recipients. In addition, rhIL-37 inhibited the expression of p-mTOR in CD4+ cells of splenocytes. In vitro, similar to the in vivo experiments, rhIL-37 caused a decrease in the proportion of Th1 and Th17, as well as an increase in the proportion of Treg and a reduction in p-mTOR expression in CD4+ cells. CONCLUSIONS: We demonstrated that rhIL-37 effectively suppress acute rejection and induce long-term allograft acceptance. The results highlight that IL-37 could be novel and promising candidate for prevention of allograft rejection.

3.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611728

RESUMO

The epidermal growth factor receptor (EGFR) plays a pivotal role in cancer therapeutics, with small-molecule EGFR inhibitors emerging as significant agents in combating this disease. This review explores the synthesis and clinical utilization of EGFR inhibitors, starting with the indispensable role of EGFR in oncogenesis and emphasizing the intricate molecular aspects of the EGFR-signaling pathway. It subsequently provides information on the structural characteristics of representative small-molecule EGFR inhibitors in the clinic. The synthetic methods and associated challenges pertaining to these compounds are thoroughly examined, along with innovative strategies to overcome these obstacles. Furthermore, the review discusses the clinical applications of FDA-approved EGFR inhibitors such as erlotinib, gefitinib, afatinib, and osimertinib across various cancer types and their corresponding clinical outcomes. Additionally, it addresses the emergence of resistance mechanisms and potential counterstrategies. Taken together, this review aims to provide valuable insights for researchers, clinicians, and pharmaceutical scientists interested in comprehending the current landscape of small-molecule EGFR inhibitors.


Assuntos
Carcinogênese , Transformação Celular Neoplásica , Humanos , Afatinib , Receptores ErbB , Cloridrato de Erlotinib
4.
Arch Microbiol ; 206(3): 125, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411841

RESUMO

Non-specific endonucleases can be used for the digestion of nucleic acids because they hydrolyze DNA/RNA into 3-5 base pairs (bp) length oligonucleotide fragments without strict selectivity. In this work, a novel non-specific endonuclease from Pseudomonas fluorescens (PfNuc) with high activities for both DNA and RNA was successfully cloned and expressed in Escherichia coli. The production of PfNuc in flask scale could be achieved to 1.73 × 106 U/L and 4.82 × 106 U/L for DNA and RNA by investigation of the culture and induction conditions. The characterization of PfNuc indicated that it was Mg2+-dependent and the catalytic activity was enhanced by 3.74 folds for DNA and 1.06 folds for RNA in the presence of 5 mM Mg2+. The specific activity of PfNuc for DNA was 1.44 × 105 U/mg at pH 8.0 and 40 °C, and 3.93 × 105 U/mg for RNA at pH 8.5 and 45 °C. The Km of the enzyme for both DNA and RNA was close to 43 µM. The Vmax was 6.40 × 105 U/mg and 1.11 × 106 U/mg for DNA and RNA, respectively. There was no observed activity loss when PfNuc was stored at 4 °C and - 20 °C after 28 days or 10 repeated freeze-thaw cycles at - 80 °C. Molecular docking revealed that PfNuc formed 17 and 19 hydrogen bonds with single-stranded RNA and double-stranded DNA, respectively. These results could explain the high activity and stability of PfNuc, suggesting its great potential applications in the industry and clinic.


Assuntos
Pseudomonas fluorescens , Pseudomonas fluorescens/genética , Simulação de Acoplamento Molecular , RNA , Endonucleases/genética , Escherichia coli/genética , DNA , Clonagem Molecular
5.
Asian J Androl ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38284772

RESUMO

Cuproptosis, a novel mechanism of programmed cell death, has not been fully explored in the context of spermatogenic cells. This study investigated the potential involvement of cuproptosis in spermatogenic cell death using a mouse model of copper overload. Sixty male Institute of Cancer Research (ICR) mice were randomly divided into four groups that received daily oral gavage with sodium chloride (control) or copper sulfate (CuSO4) at 50 mg kg-1, 100 mg kg-1, or 200 mg kg-1, for 42 consecutive days. Mice subjected to copper overload exhibited a disruption in copper homeostasis. Additionally, significant upregulated expression of key cuproptosis factors was accompanied by a significant rise in the rates of testicular tissue cell apoptosis. Immunohistochemical analysis revealed the presence of ferredoxin 1 (Fdx1) in Sertoli cells, Leydig cells, and spermatogenic cells at various stages of testicular development, and the Fdx1-positive staining area was significantly increased in copper-overloaded mice. Mitochondrial dysfunction and decreased adenosine triphosphate levels were also observed, further implicating mitochondrial damage under cuproptosis. Further analyses revealed pathological lesions and blood-testis barrier destruction in the testicular tissue, accompanied by decreased sperm concentration and motility, in copper-overloaded mice. In summary, our results indicate that copper-overloaded mice exhibit copper homeostasis disorder in the testicular tissue and that cuproptosis participates in spermatogenic cell death. These findings provide novel insights into the pathogenic mechanisms underlying spermatogenic cell death and provide initial experimental evidence for the occurrence of cuproptosis in the testis.

6.
Eur J Med Chem ; 267: 116185, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38295688

RESUMO

Type 2 diabetes mellitus (T2DM) is a long-term metabolic disorder characterized by the body's resistance to insulin and inadequate production of insulin. Small molecule drugs to treat T2DM mainly control blood sugar levels by improving insulin sensitivity, increasing insulin secretion, or reducing liver glycogen production. With the deepening of research on the pathogenesis of diabetes, many drugs with new targets and mechanisms of action have been discovered. The targets of the drugs for T2DM are mainly dipeptidyl peptidase IV inhibitors (DPP4), sodium/glucose cotransporter 2 inhibitors (SGLT2), sulfonylurea receptor modulators (SUR), peroxisome proliferator-activated receptor γ agonists (PPARγ), etc. We are of the opinion that acquiring a comprehensive comprehension of the synthetic procedures employed in drug molecule production will serve as a source of inventive and pragmatic inspiration for the advancement of novel, more potent, and feasible synthetic methodologies. This review aims to outline the clinical applications and synthetic routes of some representative drugs to treat T2DM, which will drive the discovery of new, more effective T2DM drugs.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Insulina
7.
Bioorg Chem ; 143: 106998, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38035513

RESUMO

Androgen receptor (AR) plays a crucial role in various physiological processes. Dysregulation of AR signaling has been implicated in several diseases, such as prostate cancer and androgenetic alopecia. Therefore, the development of drugs that specifically target AR has gained significant attention in the field of drug discovery. This review provides an overview of the synthetic routes of clinically approved small molecule drugs targeting AR and discusses the clinical applications of these drugs in the treatment of AR-related diseases. The review also highlights the challenges and future perspectives in this field, including the need for improved drug design and the exploration of novel therapeutic targets. Through an integrated analysis of the therapeutic applications, synthetic methodologies, and mechanisms of action associated with these approved drugs, this review facilitates a holistic understanding of the versatile roles and therapeutic potential of AR-targeted interventions. Overall, this comprehensive review serves as a valuable resource for medicinal chemists interested in the development of small-molecule drugs targeting AR.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Descoberta de Drogas , Desenho de Fármacos , Transdução de Sinais
8.
Eur J Med Chem ; 262: 115925, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948954

RESUMO

Prostate cancer is a prevalent form of cancer that primarily affects men, with a high incidence and mortality rate. It is the second most common cancer among males, following lung cancer. Typically occurring in individuals aged 50 and above, this malignant tumor originates from abnormal cells in the prostate tissue. If left untreated, it can spread to nearby tissues, lymph nodes, and even bones. Current treatment methods include surgery, radiotherapy, and chemotherapy. However, these treatments have certain limitations and side effects. Therefore, researching and developing new small-molecule drugs to treat prostate cancer is of great significance. In recent years, many small-molecule drugs have been proven to have therapeutic effects on prostate cancer. The purpose of this review is to give a comprehensive look at the clinical uses and synthetic methods of various significant small-molecule drugs that have been approved to treat prostate cancer, to facilitate the development of more powerful and innovative drugs for the effective control of prostate cancer.


Assuntos
Neoplasias Pulmonares , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia
9.
J Fungi (Basel) ; 9(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37998901

RESUMO

Endophytic fungi isolated from medicinal ferns serve as significant natural resources for drug precursors or bioactive metabolites. During our survey on the diversity of endophytic fungi from Dicranopteris species (a genus of medicinal ferns) in Guizhou, Apoiospora was observed as a dominant fungal group. In this study, seven Apiospora strains, representing four new species, were obtained from the healthy plant tissues of three Dicranopteris species-D. ampla, D. linearis, and D. pedata. The four new species, namely Apiospora aseptata, A. dematiacea, A. dicranopteridis, and A. globosa, were described in detail with color photographs and subjected to phylogenetic analyses using combined LSU, ITS, TEF1-α, and TUB2 sequence data. This study also documented three new hosts for Apiospora species.

10.
Diagnostics (Basel) ; 13(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37892056

RESUMO

Background: CT-guided hook-wire localization is an essential step in the management of small pulmonary nodules. Few studies, however, have focused on reducing radiation exposure during the procedure. Purpose: This study aims to explore the feasibility of implementing a low-dose computed tomography (CT)-guided hook wire localization using tailored kVp based on patients' body size. Materials and Methods: A total of 151 patients with small pulmonary nodules were prospectively enrolled for CT-guided hook wire localization using individualized low-dose CT (LDCT) vs. standard-dose CT (SDCT) protocols. Radiation dose, image quality, characteristics of target nodules and procedure-related variables were compared. All variables were analyzed using Chi-Square and Student's t-test. Results: The mean CTDIvol was significantly reduced for LDCT (for BMI ≤ 21 kg/m2, 0.56 ± 0.00 mGy and for BMI > 21 kg/m2, 1.48 ± 0.00 mGy) when compared with SDCT (for BMI ≤ 21 kg/m2, 5.24 ± 0.95 mGy and for BMI > 21 kg/m2, 6.69 ± 1.47 mGy). Accordingly, the DLP of LDCT was significantly reduced as compared with that of SDCT (for BMI ≤ 21 kg/m2, 56.86 ± 4.73 vs. 533.58 ± 122.06 mGy.cm, and for BMI > 21 kg/m2, 167.02 ± 38.76 vs. 746.01 ± 230.91 mGy.cm). In comparison with SDCT, the effective dose (ED) of LDCT decreased by an average of 89.42% (for BMI ≤ 21 kg/m2) and 77.68% (for BMI > 21 kg/m2), respectively. Although the images acquired with the LDCT protocol yielded inferior quality to those acquired with the SDCT protocol, they were clinically acceptable for hook wire localization. Conclusions: LDCT-guided localization can provide safety and nodule detection performance comparable to SDCT-guided localization, benefiting radiation dose reduction dramatically, especially for patients with small body mass indexes.

11.
Eur J Med Chem ; 261: 115848, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37793326

RESUMO

Janus kinase (JAK) plays a crucial role in intracellular signaling pathways, particularly in cytokine-mediated signal transduction, making them attractive therapeutic targets for a wide range of diseases, including autoimmune disorders, myeloproliferative neoplasms, and inflammatory conditions. The review provides a comprehensive overview of the development and therapeutic potential of small-molecule inhibitors targeting JAK family of proteins in various clinical trials. It also discusses the mechanisms of action, specificity, and selectivity of these inhibitors, shedding light on the challenges associated with achieving target selectivity while minimizing off-target effects. Moreover, the review offers insights into the clinical applications of JAK inhibitors, summarizing the ongoing clinical trials and the Food and Drug Administration (FDA)-approved JAK inhibitors currently available for various diseases. Overall, this review provides a thorough examination of the synthesis and clinical use of typical small-molecule JAK inhibitors in different clinical stages and offers a bright future for the development of novel small-molecule JAK inhibitors.


Assuntos
Doenças Autoimunes , Inibidores de Janus Quinases , Transtornos Mieloproliferativos , Humanos , Janus Quinases , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Transtornos Mieloproliferativos/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Transdução de Sinais
12.
Eur J Med Chem ; 261: 115835, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37801827

RESUMO

Lymphoma is a form of cancer that impacts the lymphatic system, which plays a crucial role in defending the body against infections and illnesses. It is characterized by the atypical proliferation of lymphocytes, a type of white blood cell, which can form tumors in the lymph nodes, bone marrow, spleen, etc. Lymphoma is usually treated using a combination of targeted therapy, chemotherapy, and radiation therapy. In recent years, there has been a growing interest in the development of new drugs to treat lymphoma, which has led to the discovery of several promising compounds. The primary targets for lymphoma treatment have been identified as Bruton's tyrosine kinase (BTK), phosphoinositide3-kinase (PI3K), histone deacetylase (HDAC), and DNA polymerase (POLA). This review aims to provide an overview of the clinical applications and synthesis of several notable drugs approved to treat lymphoma, to expedite the exploration of more potent novel medications for the management of lymphoma.


Assuntos
Linfoma , Humanos , Linfoma/tratamento farmacológico , Tirosina Quinase da Agamaglobulinemia/metabolismo , Medula Óssea , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico
13.
Mol Biomed ; 4(1): 26, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37661221

RESUMO

The pharmaceutical industry had a glorious year in 2022, with a total of 37 new drugs including 20 new chemical entities (NCEs) and 17 new biological entities (NBEs) approved by the Food and Drug Administration (FDA). These drugs are mainly concentrated in oncology, central nervous system, antiinfection, hematology, cardiomyopathy, dermatology, digestive system, ophthalmology, MRI enhancer and other therapeutic fields. Of the 37 drugs, 25 (68%) were approved through an expedited review pathway, and 19 (51%) were approved to treat rare diseases. These newly listed drugs have unique structures and new mechanisms of action, which can serve as lead compounds for designing new drugs with similar biological targets and enhancing therapeutic efficacy. This review aims to outline the clinical applications and synthetic methods of 19 NCEs newly approved by the FDA in 2022, but excludes contrast agent (Xenon Xe-129). We believe that an in-depth understanding of the synthetic methods of drug molecules will provide innovative and practical inspiration for the development of new, more effective, and practical synthetic techniques. According to the therapeutic areas of these 2022 FDA-approved drugs, we have classified these 19 NCEs into seven categories and will introduce them in the order of their approval for marketing.

14.
Bioorg Chem ; 140: 106807, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37651895

RESUMO

Pharmacological interventions that specifically target protein products of oncogenes in tumors have surfaced as a propitious therapeutic approach. Among infrequent genetic alterations, rearrangements of the anaplastic lymphoma kinase (ALK) gene, typically involving a chromosome 2 inversion that culminates in a fusion with the echinoderm microtubule-associated protein like 4 (EML4), lead to anomalous expression and activation of ALK. The inhibition of autophosphorylation and subsequent blockade of signal transduction by ALK tyrosine kinase inhibitors (TKIs) has been observed to elicit anti-tumor effects. Currently, four generations of ALK-positive targeted drugs have been investigated, providing a promising outlook for patients. The aim of this review is to furnish a comprehensive survey of the synthesis and clinical application of prototypical small-molecule ALK inhibitors in both preclinical and clinical phases, offering guidance for further development of ALK inhibitors for cancer therapy.


Assuntos
Proteínas Tirosina Quinases , Quimera de Direcionamento de Proteólise , Humanos , Quinase do Linfoma Anaplásico , Fosforilação , Proteínas do Citoesqueleto , Inibidores de Proteínas Quinases/farmacologia
15.
Toxicon ; 232: 107223, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437783

RESUMO

Oocyte maturation is important for fertility in mammals, since the quality of oocytes directly affects fertilization, embryo attachment and survival. Nivalenol is widely present in nature as a common toxin that contaminates grain and feed, and it has been reported to cause acute toxicity, immunotoxicity, reproductive toxicity and carcinogenic effects. In this study, we explored the impact of nivalenol on the porcine oocyte maturation and its possible mechanisms. The extrusion of the first polar body was significantly inhibited after incubating oocytes with nivalenol. Meanwhile, nivalenol exposure led to the abnormal distribution of mitochondria, aberrant calcium concentration and the reduction of membrane potential caused a significant decrease in the capacity of mitochondria to generate ATP. In addition, nivalenol induced oxidative stress, and the level of ROS was significantly increased in the nivalenol-treated group, which was confirmed by the perturbation of oxidative stress-related genes. We found that nivalenol-treated oocytes showed positive Annexin-V and γH2A.X signals, indicating the occurrence of apoptosis and DNA damage. In all, our data suggest that nivalenol disrupted porcine oocyte maturation through its effects on mitochondria-related oxidative stress, apoptosis and DNA damage.


Assuntos
Oócitos , Oogênese , Suínos , Animais , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Mitocôndrias , Apoptose , Mamíferos
16.
Curr Med Sci ; 43(4): 784-793, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405607

RESUMO

OBJECTIVE: Gestational diabetes mellitus (GDM) is the most common metabolic disorder during pregnancy. LncRNA HLA complex group 27 (HCG27) plays a crucial role in various metabolic diseases. However, the relationship between lncRNA HCG27 and GDM is not clear. This study aimed to verify a competing endogenous RNA (ceRNA) interaction regulation axis of miR-378a-3p/mitogen-activated protein kinase 1 (MAPK1) regulated by HCG27 in GDM. METHODS: LncRNA HCG27 and miR-378a-3p were detected by RT-qPCR. The expression of MAPK1 in umbilical vein endothelial cells (HUVECs) was detected by RT-qPCR and that in the placenta by Western blotting. To explore the relationship among lncRNA HCG27, miR-378a-3p, MAPK1 and the glucose uptake ability of HUVECs, vector HCG27, si-HCG27, miR-378a-3p mimic and inhibitor were transfected to achieve overexpression and inhibition of HCG27 or miR-378a-3p. The interaction between miR-378a-3p and lncRNA HCG27 or MAPK1 was confirmed by the dual-luciferase reporter assay. Besides, glucose consumption by HUVECs was detected by the glucose assay kit. RESULTS: HCG27 expression was significantly decreased in both the placenta and primary umbilical vein endothelial cells, while the expression of miR-378a-3p was significantly increased in GDM tissues, and the expression of MAPK1 was decreased in GDM tissues. This ceRNA interaction regulation axis was proved to affect the glucose uptake function of HUVECs. The transfection of si-HCG27 could significantly reduce the expression of the MAPK1 protein. If the MAPK1 overexpression plasmid was transfected simultaneously with si-HCG27 transfection, the reduced glucose uptake in HUVECs resulting from the decrease in lncRNA HCG27 was reversed. MiR-378a-3p mimic can significantly reduce the mRNA expression of MAPK1 in HUVECs, whereas miR-378a-3p inhibitor can significantly increase the mRNA expression of MAPK1. The inhibition of miR-378a-3p could restore the decreased glucose uptake of HUVECs treated with si-HCG27. Besides, overexpression of lncRNA HCG27 could restore the glucose uptake ability of the palmitic acid-induced insulin resistance model of HUVECs to normal. CONCLUSION: LncRNA HCG27 promotes glucose uptake of HUVECs by miR-378a-3p/MAPK1 pathway, which may provide potential therapeutic targets for GDM. Besides, the fetal umbilical cord blood and umbilical vein endothelial cells collected from pregnant women with GDM after delivery could be used to detect the presence of adverse molecular markers of metabolic memory, so as to provide guidance for predicting the risk of cardiovascular diseases and health screening of offspring.


Assuntos
Diabetes Gestacional , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Gravidez , Diabetes Gestacional/genética , Glucose , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro
17.
Eur J Med Chem ; 259: 115654, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37467618

RESUMO

Osteoporosis is a metabolic bone disorder typified by a reduction in bone mass and structural degradation of bone tissue, leading to heightened fragility and vulnerability to fractures. The incidence of osteoporosis increases with age, making it a significant public health challenge. The pathogenesis of osteoporosis involves an imbalance between osteoblast-mediated bone formation and resorption. The current treatment options for osteoporosis include bisphosphonates, hormone replacement therapy (HRT), selective estrogen receptor modulators (SERMs), and denosumab. The recent advances in small-molecule drugs for the clinical treatment of osteoporosis offer promising options for improving bone health and reducing fracture risk. This review aims to provide an overview of the clinical applications and synthetic routes of representative small-molecule drugs for the treatment of osteoporosis. A comprehensive understanding of the synthetic methods of drug molecules for osteoporosis may inspire the development of new, more effective, and practical synthetic techniques for treating this condition.


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Osteoporose , Feminino , Humanos , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose/tratamento farmacológico , Densidade Óssea , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/farmacologia
18.
Heliyon ; 9(5): e15631, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153415

RESUMO

Objective: 'Homotherapy for heteropathy' is a theory by which different diseases with similar pathogenesis can be treated with one Chinese formula. We aimed to explore the key components and core targets of Weijing decoction (WJD) in treating various lung diseases, namely, pneumonia, chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), pulmonary fibrosis, pulmonary tuberculosis and non-small cell lung cancer (NSCLC), via network pharmacology, molecular docking and some experiments. Significance: This is the first study on the mechanism of WJD in treating various lung diseases by 'homotherapy for heteropathy'. This study is helpful for the transformation of TCM formula and development of new drugs. Methods: Active components and therapeutic targets of WJD were obtained via TCMSP and UniProt databases. Targets of the six pulmonary diseases were harvested from the GeneCards TTD, DisGeNet, UniProt and OMIM databases. Drug-disease intersection targets, corresponding Venn diagrams, herb-component-target networks and protein-protein interaction networks were established. Furthermore, GO biological function and KEGG enrichment analysis were completed. Moreover, the binding activity between main compounds and core targets was measured through molecular docking. Finally, the xenograft NSCLC mouse model was established. Immune responses were evaluated by flow cytometry and mRNA expression levels of critical targets were measured by real-time PCR. Results: JUN, CASP3 and PTGS2 were the most critical targets in six pulmonary diseases. The active compounds beta-sitosterol, tricin and stigmasterol stably bound to many active sites on target proteins. WJD had extensive pharmacological regulation, involving pathways related to cancer, inflammation, infection, hypoxia, immunity and so on. Conclusions: Effects of WJD against various lung diseases involve lots of compounds, targets and pathways. These findings will facilitate further research as well as clinical application of WJD.

19.
Front Immunol ; 14: 1155090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180168

RESUMO

Background: The disruption of intestinal barrier functions and the dysregulation of mucosal immune responses, mediated by aberrant purinergic metabolism, are involved in the pathogenesis of inflammatory bowel diseases (IBD). A novel mesenchymal-like endometrial regenerative cells (ERCs) has demonstrated a significant therapeutic effect on colitis. As a phenotypic marker of ERCs, CD73 has been largely neglected for its immunosuppressive function in regulating purinergic metabolism. Here, we have investigated whether CD73 expression on ERCs is a potential molecular exerting its therapeutic effect against colitis. Methods: ERCs either unmodified or with CD73 knockout (CD73-/-ERCs), were intraperitoneally administered to dextran sulfate sodium (DSS)-induced colitis mice. Histopathological analysis, colon barrier function, the proportion of T cells, and maturation of dendritic cells (DCs) were investigated. The immunomodulatory effect of CD73-expressing ERCs was evaluated by co-culture with bone marrow-derived DCs under LPS stimulation. FACS determined DCs maturation. The function of DCs was detected by ELISA and CD4+ cell proliferation assays. Furthermore, the role of the STAT3 pathway in CD73-expressing ERCs-induced DC inhibition was also elucidated. Results: Compared with untreated and CD73-/-ERCs-treated groups, CD73-expressing ERCs effectively attenuated body weight loss, bloody stool, shortening of colon length, and pathological damage characterized by epithelial hyperplasia, goblet cell depletion, the focal loss of crypts and ulceration, and the infiltration of inflammatory cells. Knockout of CD73 impaired ERCs-mediated colon protection. Surprisingly, CD73-expressing ERCs significantly decreased the populations of Th1 and Th17 cells but increased the proportions of Tregs in mouse mesenteric lymph nodes. Furthermore, CD73-expressing ERCs markedly reduced the levels of pro-inflammatory cytokines (IL-6, IL-1ß, TNF-α) and increased anti-inflammatory factors (IL-10) levels in the colon. CD73-expressing ERCs inhibited the antigen presentation and stimulatory function of DCs associated with the STAT-3 pathway, which exerted a potent therapeutic effect against colitis. Conclusions: The knockout of CD73 dramatically abrogates the therapeutic ability of ERCs for intestinal barrier dysfunctions and the dysregulation of mucosal immune responses. This study highlights the significance of CD73 mediates purinergic metabolism contributing to the therapeutic effects of human ERCs against colitis in mice.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Camundongos Knockout , Colite/induzido quimicamente , Colite/terapia , Intestinos/patologia
20.
Nat Commun ; 14(1): 1829, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005411

RESUMO

Parabacteroides distasonis (P. distasonis) plays an important role in human health, including diabetes, colorectal cancer and inflammatory bowel disease. Here, we show that P. distasonis is decreased in patients with hepatic fibrosis, and that administration of P. distasonis to male mice improves thioacetamide (TAA)- and methionine and choline-deficient (MCD) diet-induced hepatic fibrosis. Administration of P. distasonis also leads to increased bile salt hydrolase (BSH) activity, inhibition of intestinal farnesoid X receptor (FXR) signaling and decreased taurochenodeoxycholic acid (TCDCA) levels in liver. TCDCA produces toxicity in mouse primary hepatic cells (HSCs) and induces mitochondrial permeability transition (MPT) and Caspase-11 pyroptosis in mice. The decrease of TCDCA by P. distasonis improves activation of HSCs through decreasing MPT-Caspase-11 pyroptosis in hepatocytes. Celastrol, a compound reported to increase P. distasonis abundance in mice, promotes the growth of P. distasonis with concomitant enhancement of bile acid excretion and improvement of hepatic fibrosis in male mice. These data suggest that supplementation of P. distasonis may be a promising means to ameliorate hepatic fibrosis.


Assuntos
Cirrose Hepática , Piroptose , Humanos , Camundongos , Masculino , Animais , Cirrose Hepática/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Ácidos e Sais Biliares/metabolismo , Caspases/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...